
NLPQLP: A Fortran Implementation of a Sequential

Quadratic Programming Algorithm with Distributed

and Non-Monotone Line Search

- User’s Guide, Version 3.1 -

Address: Prof. K. Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

Phone: (+49) 921 557750

E-mail: klaus.schittkowski@uni-bayreuth.de

Web: http://www.klaus-schittkowski.de

Date: October, 2011

Abstract

The Fortran subroutine NLPQLP solves smooth nonlinear programming prob-
lems by a sequential quadratic programming (SQP) algorithm. This version is
specifically tuned to run under distributed systems controlled by an input parame-
ter (l). In case of computational errors as for example caused by inaccurate function
or gradient evaluations, a non-monotone line search is activated. Numerical results
are included which show that in case of noisy function values, a significant improve-
ment of the performance is achieved compared to the version with monotone line
search. Further stabilization is obtained by performing internal restarts in case of
errors when computing the search direction due to inaccurate derivatives. The new
version of NLPQLP successfully solves more than 90 % of our 306 test examples
subject to a stopping tolerance of 10−7, although at most two digits in function
values are correct in the worst case and although numerical differentiation leads
to additional truncation errors. In addition, automated initial and periodic scaling
with restarts is implemented. The usage of the code is documented and illustrated
by an example.

Keywords: SQP, sequential quadratic programming, nonlinear programming, non-monotone
line search, numerical algorithm, distributed computing, Fortran code

1

1 Introduction

We consider the general optimization problem to minimize an objective function f under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)
gj(x) = 0 , j = 1, . . . , me

gj(x) ≥ 0 , j = me + 1, . . . , m
xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the whole IRn.

Sequential quadratic programming (SQP) is the standard general purpose method to
solve smooth nonlinear optimization problems, at least under the following assumptions:

• The problem is not too large.

• Functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The original code NLPQL of Schittkowski [49] is a Fortran implementation of a se-
quential quadratic programming (SQP) algorithm. The numerical algorithm is based
on extensive comparative numerical tests, see Schittkowski [42, 46, 44], Schittkowski et
al. [58], Hock and Schittkowski [26], and on further theoretical investigations published
in [43, 45, 47, 48]. The algorithm is extended to solve also nonlinear least squares prob-
lems efficiently, see [51] or [53], and to handle problems with very many constraints, see
[56]. To conduct the numerical tests, a random test problem generator is developed for a
major comparative study, see [42]. Two collections with together 306 test problems are
published in Hock and Schittkowski [26] and in Schittkowski [50]. Fortran source codes
and a test frame can be downloaded from the home page of the author,

http://www.klaus-schittkowski.de

Many of them became part of the Cute test problem collection of Bongartz et al. [8]. About
80 test problems based on a Finite Element formulation are collected for a comparative
evaluation in Schittkowski et al. [58]. A set of 1,300 least squares test problems solved by
an extension of the code NLPQL to retain typical features of a Gauss-Newton algorithm,
is described in [53]. Also these problems can be downloaded from the home page of the
author together with an interactive software system called EASY-FIT, see [54].

Moreover, there exist hundreds of commercial and academic applications of NLPQL,
for example

1. mechanical structural optimization, see Schittkowski, Zillober, Zotemantel [58] and
Kneppe, Krammer, Winkler [29],

2

2. data fitting and optimal control of transdermal pharmaceutical systems, see Boderke,
Schittkowski, Wolf [3] or Blatt, Schittkowski [7],

3. computation of optimal feed rates for tubular reactors, see Birk, Liepelt, Schitt-
kowski, and Vogel [6],

4. food drying in a convection oven, see Frias, Oliveira, and Schittkowski [16],

5. optimal design of horn radiators for satellite communication, see Hartwanger, Schitt-
kowski, and Wolf [24],

6. receptor-ligand binding studies, see Schittkowski [52],

7. optimal design of surface acoustic wave filters for signal processing, see Bünner,
Schittkowski, and van de Braak [9].

Previous and present versions of NLPQLP are part of commercial libraries, modeling
systems, or optimization systems like

- IMSL Library (Visual Numerics Inc., Houston) for general nonlinear programming
(Version 1.0, 1981),

- ANSYS/POPT (CAD-FEM, Grafing) for structural optimization,

- DesignXplorer (ANSYS, Canonsburg) for structural design optimization,

- STRUREL (RCP, Munich) for reliability analysis,

- TEMPO (OECD Reactor Project, Halden) for control of power plants,

- Microwave Office Suit (Applied Wave Research, El Segundo) for electronic design,

- MOOROPT (Marintek, Trondheim) for the design of mooring systems,

- iSIGHT (Enginious Software/Dassault) for multi-disciplinary CAE,

- POINTER (Synaps, Atlanta) for design automation,

- EXCITE (AVL, Graz) for non-linear dynamics of power units,

- ModeFRONTIER (ESTECO, Trieste) for integrated multi-objective and multi-
disciplinary design optimization,

- TOMLAB/MathLab (Tomlab Optimization, Västeras, Sweden) for general nonlin-
ear programming, least squares optimization, data fitting in dynamical systems,

3

- EASY-FIT (Schittkowski, Bayreuth) for data fitting in dynamical systems,

- OptiSLang (DYNARDO, Weimar), for structural design optimization,

- AMESim (IMAGINE, Roanne), for multidisciplinary system design,

- LMS OPTIMUS (NOESIS, Leuven, Belgium) for multi-disciplinary CAE,

- RADIOSS/M-OPT (MECALOG/Altair, Antony, France) for multi-disciplinary
CAE,

- CHEMASIM (BASF, Ludwigshafen) for the design of chemical reactors.

Customers include, among many others, Airbus, AMD, Astrium, BASF, Bayer, Bell
Labs, BMW, Chevron Research, DLR, Dow Chemical, DuPont, EADS, EMCOSS, EN-
SIGC, EPCOS, ESA-ESOC, Eurocopter, Fantoft Prosess, General Electric, Hoechst,
Hidroelectrica Espanola, IABG, IBM, Institute for Energy Technology Halden, KFZ Karl-
sruhe, Kongsberg Maritime, Lockheed Martin, Loral Space Systems, MAN, Markov Pro-
cesses, Marintek, MTU, NASA Langley, NASA Ames, Nevesbu, National Airspace Labo-
ratory, Norsk Hydro Research, Norwegian Computing Center, Norwegian Defense Agency,
OECD Halden, Philips, Polysar, ProSim, Rolls-Royce, Shell, Siemens, Sintef, Solar Tur-
bines, Statoil, TNO, Transpower, USAF Research Lab, Wright R & D Center and in
addition dozens of academic research institutions all over the world.

The general availability of parallel computers and in particular of distributed comput-
ing in networks motivates a careful redesign of the original implementation NLPQL to
allow simultaneous function evaluations. The resulting extensions are implemented and
the code is called NLPQLP. An additional input parameter l is introduced for the number
of parallel machines, that is the number of function calls to be executed simultaneously. In
case of l = 1, NLPQLP is more or less identical to NLPQL besides of additional changes
of the code. Otherwise, the line search procedure is modified to allow parallel function
calls, which can also be applied for approximating gradients by difference formulae. The
mathematical background is outlined, in particular the modification of the line search
algorithm to retain convergence under parallel systems. It must be emphasized that dis-
tributed computation of function values is only simulated throughout the paper. It is up
to the user to adopt the code to a particular parallel environment.

However, SQP methods are quite sensitive subject to round-off or any other errors
in function and especially gradient values. If objective or constraint functions cannot be
computed within machine accuracy or if the accuracy by which gradients are approximated
is above the termination tolerance, the code could break down typically with the error
message IFAIL=4. In this situation, the line search cannot be terminated within a given
number of iterations and the algorithm is stopped.

All new versions since 2.0 makes use of non-monotone line search in the error situation
described above. The idea is to replace the reference value of the line search termination

4

check, ψrk
(xk, vk), by

max{ψrj
(xj, vj) : j = k − p, . . . , k} ,

where ψr(x, v) is a merit function and p a given parameter. The general idea is not
new and for example described in Dai [12], where a general convergence proof for the
unconstrained case is presented. The general idea goes back to Grippo, Lampariello, and
Lucidi [19], and was extended to constrained optimization and trust region methods in a
series of subsequent papers, see Bonnans et al. [5], Deng et al. [14], Grippo et al. [20, 21],
Ke and Han [27], Ke et al. [28], Lucidi et al. [31], Panier and Tits [35], Raydan [40],
and Toint [60, 61]. However, there is a basic difference in the methodology: Our goal is
to allow monotone line searches as long as they terminate successfully, and to apply a
non-monotone one only in a special error situation.

Despite of strong analytical results, SQP methods do not always terminate success-
fully. Besides of the difficulties leading to the usage of non-monotone line search, it might
happen that the search direction as computed from a certain quadratic programming sub-
problem, is not a downhill direction of the merit function needed to perform a line search.
Possible reasons are again severe errors in function and especially gradient evaluations,
or a violated regularity condition concerning linear independency of gradients of active
constraints (LICQ). In the latter case, the optimization problem is not modeled in a suit-
able way to solve it directly by an SQP method. Our new version performs an automated
restart as soon as a corresponding error message appears. The BFGS quasi-Newton ma-
trix is reset to a multiple of the identity matrix and the matrix update procedure starts
from there.

Scaling is an extremely important issue and an efficient procedure is difficult to de-
rive in the general case without knowing too much about the numerical structure of the
optimization problem. If requested by the user, the first BFGS update is started from a
multiple of the identity matrix, which takes into account information from the solution of
the initial quadratic programming subproblem. This restart can be repeated periodically
with successively adapted scaling parameters.

In Section 2 we outline the general mathematical structure of an SQP algorithm,
the non-monotone line search, and the modifications to run the code under distributed
systems. Section 3 contains some numerical results obtained for a set of 306 standard
test problems of the collections published in Hock and Schittkowski [26] and in Schitt-
kowski [50]. They show the sensitivity of the new version with respect to the number of
parallel machines and the influence of gradient approximations under uncertainty. More-
over, we test the non-monotone line search versus the monotone one, and generate noisy
test problems by adding random errors to function values and by inaccurate gradient ap-
proximations. This situation appears frequently in practical environments, where complex
simulation codes prevent accurate responses and where gradients can only be computed
by a difference formula. The usage of the Fortran subroutine is documented in Section 4
and Section 5 contains an illustrative example.

5

2 Sequential Quadratic Programming Methods

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear
programming algorithms we know today for solving differentiable nonlinear programming
problems of the form (1). The theoretical background is described e.g. in Stoer [59] and
an excellent review is given by Boggs and Tolle [4]. From the more practical point of
view, SQP methods are also introduced in the books of Papalambros, Wilde [36] and
Edgar, Himmelblau [15]. Their excellent numerical performance is tested and compared
with other methods in Schittkowski [42], and since many years they belong to the most
frequently used algorithms to solve practical optimization problems.

To facilitate the notation of this section, we assume that upper and lower bounds xu

and xl are not handled separately, i.e., we consider the somewhat simpler formulation

x ∈ IRn :
min f(x)
gj(x) = 0 , j = 1, . . . , me

gj(x) ≥ 0 , j = me + 1, . . . ,m
(2)

It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are continuously
differentiable on IRn.

The basic idea is to formulate and solve a quadratic programming subproblem in
each iteration which is obtained by linearizing the constraints and approximating the
Lagrangian function

L(x, u) := f(x)−
m∑

j=1

ujgj(x) (3)

quadratically, where x ∈ IRn is the primal variable and u = (u1, . . . , um)T ∈ IRm the
multiplier vector.

To formulate the quadratic programming subproblem, we proceed from given iterates
xk ∈ IRn, an approximation of the solution, vk ∈ IRm, an approximation of the multipliers,
and Ck ∈ IRn×n, an approximation of the Hessian of the Lagrangian function. Then one
has to solve the quadratic programming problem

d ∈ IRn :

min 1
2
dT Ckd +∇f(xk)

T d

∇gj(xk)
T d + gj(xk) = 0 , j = 1, . . . , me

∇gj(xk)
T d + gj(xk) ≥ 0 , j = me + 1, . . . , m

(4)

Let dk be the optimal solution and uk the corresponding multiplier of this subproblem.
A new iterate is obtained by

(
xk+1

vk+1

)
:=

(
xk

vk

)
+ αk

(
dk

uk − vk

)
(5)

where αk ∈ (0, 1] is a suitable steplength parameter.

6

Although we are able to guarantee that the matrix Ck is positive definite, it is possible
that (4) is not solvable due to inconsistent constraints. One possible remedy is to introduce
an additional variable δ ∈ IR, leading to a modified quadratic programming problem, see
Schittkowski [49] for details.

The steplength parameter αk is required in (5) to enforce global convergence of the SQP
method, i.e., the approximation of a point satisfying the necessary Karush-Kuhn-Tucker
optimality conditions when starting from arbitrary initial values, typically a user-provided
x0 ∈ IRn and v0 = 0, C0 = I. αk should satisfy at least a sufficient decrease condition of
a merit function φr(α) given by

φr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(6)

with a suitable penalty function ψr(x, v). Implemented is the augmented Lagrangian
function

ψr(x, v) := f(x)−∑

j∈J

(vjgj(x)− 1

2
rjgj(x)2)− 1

2

∑

j∈K

v2
j /rj , (7)

with J := {1, . . . , me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} and K := {1, . . . ,m} \ J ,
cf. Schittkowski [47]. The objective function is penalized as soon as an iterate leaves the
feasible domain. The corresponding penalty parameters rj, j = 1, . . ., m that control the
degree of constraint violation, must carefully be chosen to guarantee a descent direction
of the merit function, see Schittkowski [47] or Wolfe [62] in a more general setting, i.e., to
get

φ′rk
(0) = 5ψrk

(xk, vk)
T

(
dk

uk − vk

)
< 0 . (8)

Finally one has to approximate the Hessian matrix of the Lagrangian function in a
suitable way. To avoid calculation of second derivatives and to obtain a final superlinear
convergence rate, the standard approach is to update Ck by the BFGS quasi-Newton
formula, cf. Powell [38] or Stoer [59].

The implementation of a line search algorithm is a critical issue when implementing a
nonlinear programming algorithm, and has significant effect on the overall efficiency of the
resulting code. On the one hand we need a line search to stabilize the algorithm, on the
other hand it is not desirable to waste too many function calls. Moreover, the behavior of
the merit function becomes irregular in case of constrained optimization because of very
steep slopes at the border caused by large penalty terms. Even the implementation is
more complex than shown above, if linear constraints and bounds of the variables are to
be satisfied during the line search.

Usually, the steplength parameter αk is chosen to satisfy the Armijo [1] condition

φr(σβi) ≤ φr(0) + σβiµφ′r(0) , (9)

7

see for example Ortega and Rheinboldt [34]. The constants are from the ranges 0 < µ <
0.5, 0 < β < 1, and 0 < σ ≤ 1. We start with i = 0 and increase i until (9) is satisfied for
the first time, say at ik. Then the desired steplength is αk = σβik .

Fortunately, SQP methods are quite robust and accept the steplength one in the
neighborhood of a solution. Typically the test parameter µ for the Armijo-type sufficient
descent property (9) is very small. Nevertheless the choice of the reduction parameter β
must be adopted to the actual slope of the merit function. If β is too small, the line search
terminates very fast, but on the other hand the resulting stepsizes are usually too small
leading to a higher number of outer iterations. On the other hand, a larger value close to
one requires too many function calls during the line search. Thus, we need some kind of
compromise, which is obtained by first applying a polynomial interpolation, typically a
quadratic one, and use (9) only as a stopping criterion. Since φr(0), φ′r(0), and φr(αi) are
given, αi the actual iterate of the line search procedure, we easily get the minimizer of
the quadratic interpolation. We accept then the maximum of this value and the Armijo
parameter as a new iterate, as shown by the subsequent code fragment implemented in
NLPQLP.

Algorithm 2.1 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: α0 := 1

For i = 0, 1, 2, . . . do:

1) If φr(αi) < φr(0) + µ αi φ′r(0), then stop.

2) Compute ᾱi :=
0.5 α2

i φ′r(0)

αiφ′r(0)− φr(αi) + φr(0)
.

3) Let αi+1 := max(β αi, ᾱi).

Corresponding convergence results are found in Schittkowski [47]. ᾱi is the minimizer
of the quadratic interpolation, and we use the Armijo descent property for checking ter-
mination. Step 3 is required to avoid irregular values, since the minimizer of the quadratic
interpolation could be outside of the feasible domain (0, 1]. The search algorithm is imple-
mented in NLPQLP together with additional safeguards, for example to prevent violation
of bounds. Algorithm 4.1 assumes that φr(1) is known before calling the procedure, i.e.,
that the corresponding function values are given. We have to stop the algorithm, if suf-
ficient descent is not observed after a certain number of iterations, say 10. If the tested
stepsize falls below machine precision or the accuracy by which model function values are
computed, the merit function cannot decrease further.

To outline the new approach, let us assume that functions can be computed simultane-
ously on l different machines. Then l test values αi = βi−1 with β = ε1/(l−1) are selected,
i = 1, . . ., l, where ε is a guess for the machine precision. Next we require l parallel
function calls to get the corresponding model function values. The first αi satisfying a
sufficient descent property (9), say for i = ik, is accepted as the new steplength to set the

8

subsequent iterate by αk := αik . One has to be sure that existing convergence results of
the SQP algorithm are not violated.

The proposed parallel line search will work efficiently, if the number of parallel ma-
chines l is sufficiently large, and works as follows, where we omit the iteration index
k.

Algorithm 2.2 Let β, µ with 0 < β < 1, 0 < µ < 0.5 be given.

Start: For αi = βi compute φr(αi) for i = 0, . . ., l − 1.

For i = 0, 1, 2, . . . do:

If φr(αi) < φr(0) + µ αi φ′r(0), then stop.

To precalculate l candidates in parallel at log-distributed points between a small tol-
erance α = τ and α = 1, 0 < τ << 1, we propose β = τ 1/(l−1).

The paradigm of parallelism is SPMD, i.e., Single Program Multiple Data. In a typ-
ical situation we suppose that there is a complex application code providing simulation
data, for example by an expensive Finite Element calculation in mechanical structural
optimization. It is supposed that various instances of the simulation code providing func-
tion values, are executable on a series of different machines, so-called slaves, controlled
by a master program that executes NLPQLP. By a message passing system, for example
PVM, see Geist et al. [17], only very few data need to be transferred from the master to
the slaves. Typically only a set of design parameters of length n must to be passed. On
return, the master accepts new model responses for objective function and constraints, at
most m+1 double precision numbers. All massive numerical calculations and model data,
for example the stiffness matrix of a Finite Element model in a mechanical engineering
application, remain on the slave processors of the distributed system.

In both situations, i.e., the serial or parallel version, it is still possible that Algo-
rithm 2.1 or Algorithm 2.2 breaks down because to too many iterations. In this case, we
proceed from a descent direction of the merit function, but φ′r(0) is extremely small. To
avoid interruption of the whole iteration process, the idea is to repeat the line search with
another stopping criterion. Instead of testing (9), we accept a stepsize αk as soon as the
inequality

φrk
(αk) ≤ max

k−p(k)<=j<=k
φrj

(0) + αkµφ′rk
(0) (10)

is satisfied, where p(k) is a predetermined parameter with p(k) = min{k, p}, p a given
tolerance. Thus, we allow an increase of the reference value φrjk

(0) in a certain error
situation, i.e., an increase of the merit function value. To implement the non-monotone
line search, we need a queue consisting of merit function values at previous iterates. In case
of k = 0, the reference value is adapted by a factor greater than 1, i.e., φrjk

(0) is replace
by tφrjk

(0), t > 1. The basic idea to store reference function values and to replace the
sufficient descent property by a sufficient ’ascent’ property in max-form, is for example

9

described in Dai [12], where a general convergence proof for the unconstrained case is
presented. The general idea goes back to Grippo, Lampariello, and Lucidi [19], and was
extended to constrained optimization and trust region methods in a series of subsequent
papers, see Bonnans et al. [5], Deng et al. [14], Grippo et al. [20, 21], Ke and Han [27],
Ke et al. [28], Lucidi et al. [31], Panier and Tits [35], Raydan [40], and Toint [60, 61].
However, there is a difference in the methodology: Our goal is to allow monotone line
searches as long as they terminate successfully, and to apply a non-monotone one only in
an error situation.

The final step of an SQP method consists of updating the quasi-Newton matrix Ck,
e.g., by the BFGS formula

Ck+1 := Ck +
qkq

T
k

pT
k qk

− Ckpkp
T
k Ck

pT
k Ckpk

, (11)

where qk := 5xL(xk+1, uk)−5xL(xk, uk) and pk := xk+1−xk. Special safeguards guaran-
tee that pT

k qk > 0 and that thus all matrices Ck remain positive definite provided that C0

is positive definite. A possible scaling factor and restart procedure is to replace an actual

Ck by γkI before performing the update (11), where γk =
pT

k qk

pT
k

pk
and where I denotes the

identity matrix, see for example Liu and Nocedal [30]. Scaled restarts are recommended,
if, e.g., the convergence turns out to become extremely slow.

3 Performance Evaluation

3.1 The Test Environment

Our numerical tests use the 306 academic and real-life test problems published in Hock
and Schittkowski [26] and in Schittkowski [50]. Part of them are also available in the Cute
library, see Bongartz et. al [8], and their usage is described in Schittkowski [57].

Since analytical derivatives are not available for all problems, we approximate them
numerically. The test examples are provided with exact solutions, either known from
analytical precalculations by hand or from the best numerical data found so far.

First we need a criterion to decide whether the result of a test run is considered as a
successful return or not. Let ε > 0 be a tolerance for defining the relative accuracy, xk

the final iterate of a test run, and x? the supposed exact solution known from the test
problem collection. Then we call the output a successful return, if the relative error in
the objective function is less than ε and if the maximum constraint violation is less than
ε2, i.e., if

f(xk)− f(x?) < ε|f(x?)| , if f(x?) 6= 0

or
f(xk) < ε , if f(x?) = 0

10

and
r(xk) = ‖g(xk)

−‖∞ < ε2 ,

where ‖ . . . ‖∞ denotes the maximum norm and gj(xk)
− = min(0, gj(xk)), j > me, and

gj(xk)
− = gj(xk) otherwise.

We take into account that a code returns a solution with a better function value than
the known one, subject to the error tolerance of the allowed constraint violation. However,
there is still the possibility that an algorithm terminates at a local solution different from
the known one. Thus, we call a test run a successful one, if in addition to the above
decision the internal termination conditions are satisfied subject to a reasonably small
tolerance (IFAIL=0), and if

f(xk)− f(x?) ≥ ε|f(x?)| , if f(x?) 6= 0

or
f(xk) ≥ ε , if f(x?) = 0

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01 to determine a successful return, i.e., we
require a final accuracy of one per cent. Note that in all cases, NLPQLP is called with a
termination tolerance of 10−7.

If gradients are not available in analytical form, they must be approximated in a
suitable way. The three most popular difference formulae are the following ones:

1. Forward differences:

∂

∂xi

f(x) ≈ 1

ηi

(
f(x + ηiei)− f(x)

)
(12)

2. Two-sided differences:

∂

∂xi

f(x) ≈ 1

2ηi

(
f(x + ηiei)− f(x− ηiei

)
(13)

3. Fourth-order formula:

∂

∂xi

f(x) ≈ 1

4!ηi

(
2f(x−2ηiei)−16f(x−ηiei)+16f(x+ηiei)−2f(x+2ηiei)

)
(14)

Here ηi = η max(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The tolerance η
depends on the difference formula and is set to η = ηm

1/2 for forward differences, η = ηm
1/3

for two-sided differences, and η = (ηm/72)1/4 for fourth-order formulae. ηm is a guess for

11

the accuracy by which function values are computed, i.e., either machine accuracy in case
of analytical formulae or an estimate of the noise level in function computations. In a
similar way, derivatives of constraints are computed.

The Fortran implementation of the SQP method introduced in the previous section,
is called NLPQLP. The code represents the most recent version of NLPQL which is fre-
quently used in academic and commercial institutions. NLPQLP is prepared to run also
under distributed systems, but behaves in exactly the same way as the serial version, if
the number of simulated processors is set to one. Functions and gradients must be pro-
vided by reverse communication and the quadratic programming subproblems are solved
by the primal-dual method of Goldfarb and Idnani [18] based on numerically stable or-
thogonal decompositions. NLPQLP is executed with termination accuracy ACC=10−7 as
mentioned already above, and a maximum number of iterations MAXIT=500.

In the subsequent tables, we use the notation

nsucc - number of successful test runs (according to above definition)
nfunc - average number of function evaluations
ngrad - average number of gradient evaluations or iterations, respectively
f(x) - final objective function value
r(x) - final constraint violation
ifail - failure code

To get nfunc or ngrad, we count each evaluation of a whole set of function or gradient
values, respectively, for a given iterate xk, also in the case of several simulated processors,
l > 1. However, additional function evaluations needed for gradient approximations, are
not counted for nfunc. Their average number is nfunc for forward differences, 2×nfunc for
two-sided differences, and 4×nfunc for fourth-order formulae. One gradient computation
corresponds to one iteration of the SQP method.

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 11.0,
64 bit, under Windows 7 and Intel(R) Core(TM) i7 CPU 860, 2.8 GHz, with 8 GB RAM.

3.2 Testing Distributed Function Calls

First we investigate the question, how parallel line searches influence the overall perfor-
mance. Table 1 shows the number of successful test runs and the average number of
iterations or gradient evaluations, nit, for an increasing number of simulated parallel calls
of model functions denoted by l. The forward difference formula (12) is used for gradient
approximations and non-monotone line search is applied with a queue size of p = 30.
Calculation time is about one second for solving all 306 test problems without random
perturbations.

l = 1 corresponds to the sequential case, when Algorithm 2.1 is applied to the line
search consisting of a quadratic interpolation combined with an Armijo-type bisection
strategy and a non-monotone stopping criterion.

12

l nsucc ngrad l nsucc ngrad

1 306 23 8 299 39
3 224 177 9 301 32
4 242 170 10 302 31
5 268 114 15 303 23
6 289 75 20 303 22
7 297 45 50 303 22

Table 1: Performance Results for Parallel Line Search

In all other cases, l > 1 simultaneous function evaluations are made according to
Algorithm 2.2. To get a reliable and robust line search, one should use at least seven
parallel processors. No significant improvements are observed, if we evaluate more than
ten functions in parallel.

The most promising possibility to exploit a parallel system architecture occurs, when
gradients cannot be calculated analytically, but have to be approximated numerically,
for example by forward differences, two-sided differences, or even higher order methods.
Then we need at least n additional function calls, where n is the number of optimization
variables, or a suitable multiple of n.

3.3 Testing NLPQLP under Random Noise

For our numerical tests, we use the forward difference formula (12). To test the stability
of the SQP code, we add randomly generated noise to all function values. Non-monotone
line search is applied with a queue length of p = 40 in error situations, and the line search
calculation by Algorithm 2.1 is used. The BFGS quasi-Newton updates are restarted with
ρI if a descent direction cannot be computed, with ρ = 104.

To compare the different stabilization approaches, we apply three different scenarios
how to handle error situations, which would otherwise lead to early termination,

- monotone line search, no restarts (ρ = 0, p = 0),
- non-monotone line search, no restarts (ρ = 0, p = 40),
- non-monotone line search and restarts (ρ = 104, p = 40).

The corresponding results shown in Table 2, are evaluated for increasing random
perturbations (εerr). More precisely, if ν denotes a uniformly distributed random number
between 0 and 1, we replace f(xk) by f(xk)(1+εerr(2ν−1)) at each iterate xk. In the same
way, restriction functions are perturbed. The tolerance for approximating gradients, ηm,
is set to the machine accuracy in case of εerr = 0, and to the random noise level otherwise.

The numerical results are surprising and depend heavily on the new non-monotone
line search strategy and the additional stabilization procedures. We are able to solve
about 90 % of the test examples in case of extremely noisy function values with at most

13

ρ = 0, p = 0 ρ = 0, p = 40 ρ = 104, p = 40
εerr nsucc nfunc ngrad nsucc nfunc ngrad nsucc nfunc ngrad

0 306 36 22 306 37 22 306 37 22
10−12 304 40 23 306 66 26 306 66 26
10−10 301 45 24 305 72 28 306 72 29
10−8 276 58 26 302 103 31 304 120 32
10−6 248 77 30 295 167 40 302 222 49
10−4 178 97 30 273 220 43 295 379 62
10−2 92 163 36 224 308 48 279 630 78

Table 2: Test Results for 306 Academic Test Problems

one correct digit in partial derivative values. However, the stabilization process is costly.
The more test problems are successfully solved, the more iterations, especially function
evaluations, are needed.

3.4 Testing NLPQLP on Problems with Slow Convergence

In some situations, the convergence of an SQP method becomes quite slow, e.g., in case of
badly scaled variables or functions, inaccurate derivatives, or inaccurate solutions of the
quadratic program (4). In these situations, errors in the search direction or the partial
derivatives influence the update procedure (11) and the quasi-Newton matrices Ck are
getting more and more inaccurate.

Scaled restarts as described in Section 3 are recommended, if convergence turns out to
become extremely slow, especially caused by inaccurate partial derivatives. To illustrate
the situation, we consider a few test runs where the examples are generated by discretizing
a two-dimensional elliptic partial differential equation by the five-star formula, see Maurer
and Mittelmann [32, 33]. The original formulation is that of an optimal control problem,
and state and control variables are both discretized. The test problems possess a different
numerical structure than those used in the previous section, i.e., a large number variables
and weakly nonlinear, sparse equality constraints, and are easily scalable to larger sizes.
First partial derivatives are available in analytical form.

From a total set of 13 original test cases, we select five problems which could not be
solved by NLPQLP as efficiently as expected with standard solution tolerances, especially
if we add some noise. Depending on the grid size, in our case 20 in each direction, we
get problems with n = 722 or n = 798 variables, respectively, and me = 361 or me = 437
nonlinear equality constraints. There are no nonlinear inequality constraints. Table 3
contains a summary including the best known objective function values subject to an
optimal solution vector x?. The maximum number of iterations is limited by 500, and all
other tolerances are thee same as before.

14

problem n me f(x?)
EX1 722 361 0.45903 · 10−1

EX2 722 361 0.40390 · 10−1

EX3 722 361 0.11009
EX4 798 437 0.75833 · 10−1

EX5 798 437 0.51376 · 10−1

Table 3: Elliptic Control Problems

Note that the code NLPQLP is unable to take sparsity into account. With an SQP-
IPM solver being able to handle sparsity, it is possible to solve the same test problems
successfully with a fine grid leading to 5.000.000 variables and 2.500.000 constraints, see
Sachsenberg [41].

Table 4 shows the number of iterations or gradient evaluations, respectively, for three
sets of test runs and different noise levels. Since we have analytical derivatives, we add
the perturbations to function as we did for the first set of test runs, and to all partial
derivative values. For uniformly distributed random numbers ν between 0 and 1, we add
1+ εerr(2ν− 1) to f(xk) and ∂f(xk)/∂xi for each iterate xk and i = 1, . . ., n. In the same
way, restriction functions and their derivatives are perturbed. We consider three different
scenarios defined by εerr = 0, εerr = 10−6, and εerr = 10−4. The obtained objective
function values coincide with those of Table 3 to at least seven digits with one exception.
For one test run without scaling, but noisy function and gradient values, the upper bound
of 500 iterations is reached. But also in this case, four digits of the optimal function value
are correct. The queue length for non-monotone line search is set to 40 and the parameter
for internal restarts in error cases is set to ρ = 104.

We apply different strategies for restarting the BFGS update, i.e., Ck,

- no scaling, i.e., C0 = I,
- initial scaling by the Oren-Luenberger procedure, i.e., update started at

γ1I,
- Ck is reset if γk ≤ √

εt, where εt is the termination accuracy,
- Ck is reset every 7th step,
- Ck is reset every 15th step.

For test runs without or only initial scaling, there are only marginal difference between
unperturbed and perturbed function and derivative values. On the other hand, adaptive
and periodic scaling reduces the number of iterations significantly. The best results are
obtained for periodic scaling after 7 iterations. However, the number of test problems is
too small and their mathematical structure is too special to retrieve general conclusions.

15

noise scaling EX1 EX2 EX3 EX4 EX5
none 64 109 88 113 212
initial 64 108 75 108 202

εerr = 0 adaptive 14 13 14 16 26
7-step 14 13 14 23 29
15-step 20 20 21 25 38
none 64 109 88 110 385
initial 64 108 83 115 313

εerr = 10−6 adaptive 14 17 18 60 35
7-step 17 13 15 45 31
15-step 20 20 29 26 39
none 74 111 104 178 500
initial 63 116 102 171 397

εerr = 10−4 adaptive 30 81 43 106 42
7-step 21 32 52 53 34
15-step 48 30 29 25 57

Table 4: Elliptic Control Problems, Number of Iterations

4 Program Documentation

NLPQLP is implemented in form of a Fortran subroutine. The quadratic programming
problem is solved by the code QL, an implementation of the primal-dual method of Gold-
farb and Idnani [18] going back to Powell [39], see also Schittkowski [55] for more details
about implementation and usage. Model functions and gradients must be provided by
reverse communication. The user has to evaluate function and gradient values in the same
program which executes NLPQLP, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in the first
column of an array called X.

2. Compute objective and all constraint function values, store them in F(1) and the
first column of G, respectively.

3. Compute gradients of objective function and all constraints, and store them in
DF and DG, respectively. The J-th row of DG contains the gradient of the J-th
constraint, J=1,...,M.

4. Set IFAIL=0 and execute NLPQLP.

5. If NLPQLP returns with IFAIL=-1, compute objective and constraint function val-
ues for all variables found in the first L columns of X, store them in F (first L
positions) and G (first L columns), and call NLPQLP again.

16

6. If NLPQLP terminates with IFAIL=-2, compute gradient values with respect to
the variables stored in the first column of X, and store them in DF and DG. Only
derivatives for active constraints, ACT(J)=.TRUE., need to be computed. Then
call NLPQLP again.

7. If NLPQLP terminates with IFAIL=0, the internal optimality criteria are satisfied.
In case of IFAIL>0, an error occurred.

If analytical derivatives are not available, simultaneous function calls can be used for
gradient approximations, for example by forward differences (2N>L), two-sided differences
(4N>L≥2N), or even higher order formulae (L≥4N).

Usage:

CALL NLPQLP(L, M, ME, MMAX, N,
/ NMAX, MNN2, X, F, G,
/ DF, DG, U, XL, XU,
/ C, D, ACC, ACCQP, STPMIN,
/ MAXFUN, MAXIT, MAXNM, RHO, IPRINT,
/ MODE, IOUT, IFAIL, WA, LWA,
/ KWA, LKWA, ACT, LACT, LQL,
/ QPSLVE)

Definition of the parameters:

L : Number of parallel systems, i.e., function calls during line
search at predetermined iterates.

M : Total number of constraints.
ME : Number of equality constraints.

MMAX : Row dimension of array DG containing Jacobian of con-
straints. MMAX must be at least one and greater or equal
to M.

N : Number of optimization variables.

NMAX : Row dimension of C. NMAX must be at least two and
greater than N.

17

MNN2 : Must be equal to M+N+N+2 when calling NLPQLP.

X(NMAX,L) : Initially, the first column of X has to contain starting values
for the optimal solution. On return, X is replaced by the
current iterate. In the driving program the row dimension
of X has to be equal to NMAX. X is used internally to store
L different arguments for which function values should be
computed simultaneously.

F(L) : On return, F(1) contains the final objective function value.
F is used also to store L different objective function values
to be computed from L sets of arguments stored in X.

G(MMAX,L) : On return, the first column of G contains the constraint
function values at the final iterate X. In the driving pro-
gram, the row dimension of G has to be equal to MMAX.
G is used internally to store L different sets of constraint
function values to be computed from L sets of arguments
stored in X.

DF(NMAX) : DF contains the current gradient of the objective function.
In case of numerical differentiation and a distributed sys-
tem (L>1), it is recommended to apply parallel evaluations
of F to compute DF.

U(MNN2) : U contains the multipliers with respect to the actual it-
erate stored in the first column of X. The first M loca-
tions contain the multipliers of the M nonlinear constraints,
the subsequent N locations the multipliers of the lower
bounds, and the final N locations the multipliers of the
upper bounds. At an optimal solution, all multipliers with
respect to inequality constraints should be nonnegative.

XL(N),XU(N) : On input, the one-dimensional arrays XL and XU must
contain the lower and upper bounds of the variables, re-
spectively.

C(NMAX,NMAX) : On return, C contains the last computed approximation of
the Hessian matrix of the Lagrangian function. C is stored
in form of an Cholesky decomposition, is LQL is set to false,
see below. In this case, C contains the lower triangular
factor of an LDL factorization of the final quasi-Newton
matrix (without diagonal elements, which are always one).
In the driving program, the row dimension of C has to be
equal to NMAX.

18

D(NMAX) : The elements of the diagonal matrix of the LDL decom-
position of the quasi-Newton matrix are stored in the one-
dimensional array D, if LQL is false.

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is needed for the QP solver to perform sev-
eral tests, for example whether optimality conditions are
satisfied or whether a number is considered as zero or not.
If ACCQP is less or equal to zero, then the machine preci-
sion is computed by NLPQLP and subsequently multiplied
by 1.0D+4.

STPMIN : Minimum steplength in case of L>1. Recommended is any
value in the order of the accuracy by which functions are
computed. The value is needed to compute a steplength
reduction factor by STPMIN**(1/(L-1)). STPMIN should
not fall below machine accuracy.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20). MAXFUN
is only needed in case of L=1, and must not be greater than
50.

MAXIT : Maximum number of outer iterations, where one itera-
tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients (e.g. 100).

MAXNM : Stack size for storing merit function values at previous
iterations for non-monotone line search (e.g. 10). If
MAXNM=0, monotone line search is performed. MAXNM
should not be greater than 50.

RHO : Parameter for performing a restart in case of IFAIL=2
by setting the BFGS-update matrix to RHO*I, where I
denotes the identity matrix. The number of restarts is
bounded by MAXFUN. A value greater than one is recom-
mended. (e.g. 100).

19

IPRINT : Specification of the desired output level.

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

Note that constraint and multiplier values are not displayed
for N,M>1,000

MODE : The parameter specifies the desired version of NLPQLP.

0 - Normal execution (reverse communication!).

1 - Initial guess for multipliers in U and Hessian of the

Lagrangian function in C and D provided.

In case of LQL=.TRUE., D is ignored. Otherwise,

the lower part of C has to contain the lower triangular

factor of an LDL decomposition and D the diagonal

part.

2 - Initial scaling (Oren-Luenberger) after first step, BFGS

updates started from multiple of identity matrix.

3 - Scaled restart, if scaling parameter is less than square

root of ACC.
> 3 - Initial and repeated scaling every MODE steps, reset

of BFGS matrix to multiple of identity matrix.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially, IFAIL must be set to zero. On return,
IFAIL could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

20

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, M>MMAX, N≥NMAX, or

MNN2 6=M+N+N+2.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

WA(LWA) : WA is a double precision working array of length LWA. On
return, the first N positions contain the best feasible iterate
obtained, WA(N+1) the corresponding objective function
value, and the subsequent M positions the constraint val-
ues. If no intermediate feasible solution exists, WA(N+1)
contains a large value, e.g., 1.0D+72.

LWA : Length of WA, has to be at least at least
23*N+4*M+3*MMAX+150.

NOTE: The standard QP-solver coming together
with NLPQLP (QL) needs additional memory for
3*NMAX*NMAX/2+10*NMAX+MMAX+M+1 double
precision numbers.

KWA(LKWA) : KWA is an integer working array of length LKWA. On re-
turn, the first 5 positions contain the following information:

KWA(1) - Number of function evaluations.

KWA(2) - Number of gradient evaluations.

KWA(3) - Iteration count.

KWA(4) - Number of QP’s solved.

KWA(5) - Flag for better feasible, but non-stationary

iterate (=1) or not (=0), see below.

LKWA : Length of KWA, has to be at least 20.

NOTE: The standard QP-solver coming together with
NLPQLP (QL) needs additional memory for N integer
numbers.

21

ACT(LACT) : The logical array indicates constraints, which NLPQLP
considers to be active at the last computed iterate, i.e.,
G(J,1) is active, if and only if ACT(J) is true for J=1,...,M.

LACT : Length of ACT, has to be at least 2*M+10.

LQL : If LQL is set to true in the calling program, the quadratic
programming problem is solved proceeding from a full pos-
itive definite quasi-Newton matrix. Otherwise, a Cholesky
decomposition (LDL) is performed and updated internally,
so that matrix C always consists of the lower triangular
factor and D of the diagonal.

QPSLVE : External subroutine to solve the quadratic programming
subproblem. The calling sequence is

CALL QPSLVE(M,ME,MMAX,N,NMAX,MNN,C,D,A,B,

/ XL,XU,X,U,EPS,MODE,IOUT,IFAIL,IPRINT,

/ WAR,LWAR,IWAR,LIWAR)

For more details about the choice and dimensions of argu-
ments, see [55].

Some of the termination reasons depend on the accuracy used for approximating gradi-
ents. If we assume that all functions and gradients are computed within machine precision
and that the implementation is correct, there remain only the following possibilities that
could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm plays
around with round-off errors without being able to improve the solution. Especially
the Hessian approximation of the Lagrangian function becomes unstable in this case.
A straightforward remedy is to restart the optimization cycle again with a larger
stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out, whether nonlinear and nonconvex constraints are feasible or
not. Thus, the nonlinear programming algorithms will proceed until running in any
of the mentioned error situations. In this case, the correctness of the model must
be carefully checked.

3. Constraints are feasible, but active constraints are degenerate, e.g., redundant. One
should know that SQP algorithms assume the satisfaction of the so-called linear
independency constraint qualification, i.e., that gradients of active constraints are
linearly independent at each iterate and in a neighborhood of an optimal solution. In
this situation, it is recommended to check the formulation of the model constraints.

22

However, some of the error situations also occur if, because of wrong or non-accurate
gradients, the quadratic programming subproblem does not yield a descent direction for
the underlying merit function. In this case, one should try to improve the accuracy of
function evaluations, scale the model functions in a proper way, or start the algorithm
from other initial values.

Since Version 2.1, NLPQLP returns the best iterate obtained. In case of successful
termination (IFAIL=0), this is always the last one. But it might be possible that in an
exceptional situation, an intermediate iterate is feasible with a better objective function
value than that one of the final iterate, but the KKT optimality conditions are not sat-
isfied. In this case, the better feasible solution is stored at the first n positions of the
double precision working array and the corresponding objective function value at position
n + 1. Moreover, positions n + 2 to n + 1 + m contain the constraint values. Note that
feasibility is tested by sum of constrained violations tested against ACC.

On successful return with IFAIL=0, KWA(5) is set to zero. If, however, a better feasi-
ble objective function value has been found during the first five iterations, then KWA(5)
is set to 1, the BFGS-update matrix is set to ρI with ρ > 0, where I denotes the identity
matrix. The corresponding formal argument of NLPQLP is called RHO. Moreover, the
multiplier approximation vector U is set to 0. Thus, an immediate restart under control
of the user is possible with MODE=1. Some information is printed on the standard IO
channel in case of IPRINT>0. For compatibility reasons with previous versions, RHO
replaces TOLNM.

The QP solver is defined in form of an external subroutine to allow a replacement in
case of exploiting special sparsity patterns. A typical example is the usage of NLPQLP
for solving least squares problems, where artificially introduced equality constraints lead
to a Jacobian which consist partially of the identity matrix, see Schittkowski [52, 53].

The internal scaling and restart option is borrowed from limited-memory quasi-Newton
methods, see for example Liu and Nocedal [30]. If requested by the user, the quasi-Newton
matrix is replaced by a scalar multiple of the identity matrix just before updating. Either
an initial scaling or a reset of the whole matrix and computation of a new scaling parameter
is performed depending on the input parameter MODE. A scaled restart is recommended,
if, e.g., the convergence turns out to become extremely slow.

5 Examples

To give an example how to organize the code, we consider Rosenbrock’s post office prob-
lem, i.e., test problem TP37 of Hock and Schittkowski [26].

23

x1, x2 ∈ IR :

min−x1x2x3

x1 + 2x2 + 2x3 ≥ 0
72− x1 − 2x2 − 2x3 ≥ 0
0 ≤ x1 ≤ 42
0 ≤ x2 ≤ 42
0 ≤ x3 ≤ 42

(15)

NLPQLP comes with a couple of demo programs by which the following situations are
to be illustrated:

file name comments
nlp demoA.for numerical differentiation and distributed function calls
nlp demoB.for numerical differentiation
nlp demoC.for analytical derivatives
nlp demoD.for warm and cold restarts
nlp demoE.for simultaneous function and gradient evaluation
nlp demoF.for active set strategy
nlp demoG.for active set strategy

A Fortran source code for a typical situation is listed below. Gradients are approxi-
mated by forward differences. The function block inserted in the main program can be
replaced by a subroutine call. Also the gradient evaluation is easily exchanged by an
analytical one or higher order derivatives.

IMPLICIT NONE

INTEGER NMAX, MMAX, LMAX, MNN2X, LWA, LKWA, LACTIV

PARAMETER (NMAX = 4,

/ MMAX = 2,

/ LMAX = 10,

/ MNN2X = MMAX + NMAX + NMAX + 2,

/ LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200,

/ LKWA = NMAX + 10,

/ LACTIV = 2*MMAX + 10)

INTEGER KWA(LKWA), N, ME, M, L, MNN2, MAXIT, MAXFUN,

/ IPRINT, MAXNM, IOUT, MODE, IFAIL, I, J, K, NFUNC

DOUBLE PRECISION X(NMAX,LMAX), F(LMAX), G(MMAX,LMAX), DF(NMAX),

/ DG(MMAX,NMAX), U(MNN2X), XL(NMAX), XU(NMAX),

/ C(NMAX,NMAX), D(NMAX), WA(LWA), ACC, ACCQP,

/ STPMIN, EPS, EPSREL, FBCK, GBCK(MMAX), XBCK,

/ RHO

LOGICAL ACTIVE(LACTIV), LQL

EXTERNAL QL

C

C Set some constants and initial values

C

IOUT = 6

ACC = 1.0D-8

ACCQP = 1.0D-12

STPMIN = 1.0D-10

EPS = 1.0D-7

MAXIT = 100

MAXFUN = 10

24

MAXNM = 10

RHO = 0.0D0

LQL = .TRUE.

IPRINT = 2

N = 3

L = N

M = 2

ME = 0

MNN2 = M + N + N + 2

MODE = 0

IFAIL = 0

NFUNC = 0

DO I=1,N

DO K=1,L

X(I,K) = 10.0D0

ENDDO

XL(I) = 0.0D0

XU(I) = 42.0D0

ENDDO

1 CONTINUE

C==

C This is the main block to compute all function values

C simultaneously, assuming that there are L nodes.

C The block is executed either for computing a steplength

C or for approximating gradients by forward differences.

C

DO K=1,L

F(K) = -X(1,K)*X(2,K)*X(3,K)

G(1,K) = X(1,K) + 2.0D0*X(2,K) + 2.0D0*X(3,K)

G(2,K) = 72.0D0 - X(1,K) - 2.0D0*X(2,K) - 2.0D0*X(3,K)

ENDDO

C

C==

NFUNC = NFUNC + 1

IF (IFAIL.EQ.-1) GOTO 4

IF (NFUNC.GT.1) GOTO 3

2 CONTINUE

FBCK = F(1)

DO J=1,M

GBCK(J) = G(J,1)

ENDDO

XBCK = X(1,1)

DO I=1,N

EPSREL = EPS*DMAX1(1.0D0,DABS(X(I,1)))

DO K=2,L

X(I,K) = X(I,1)

ENDDO

X(I,I) = X(I,1) + EPSREL

ENDDO

GOTO 1

3 CONTINUE

X(1,1) = XBCK

DO I=1,N

EPSREL = EPS*DMAX1(1.0D0,DABS(X(I,1)))

DF(I) = (F(I) - FBCK)/EPSREL

DO J=1,M

DG(J,I) = (G(J,I) - GBCK(J))/EPSREL

ENDDO

ENDDO

F(1) = FBCK

DO J=1,M

G(J,1) = GBCK(J)

25

ENDDO

C

4 CONTINUE

CALL NLPQLP (L, M, ME, MMAX, N,

/ NMAX, MNN2, X, F, G,

/ DF, DG, U, XL, XU,

/ C, D, ACC, ACCQP, STPMIN,

/ MAXFUN, MAXIT, MAXNM, RHO, IPRINT,

/ MODE, IOUT, IFAIL, WA, LWA,

/ KWA, LKWA, ACTIVE, LACTIV, LQL,

/ QL)

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

WRITE(IOUT,1000) NFUNC

1000 FORMAT(’ *** Number of function calls: ’,I3)

C

STOP

END

The following output should appear on screen:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

N = 3

M = 2

ME = 0

MODE = 0

ACC = 0.1000D-07

ACCQP = 0.1000D-11

STPMIN = 0.1000D-09

MAXFUN = 3

MAXNM = 10

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.44D+04

2 -0.23625000D+04 0.64D-07 1 1 0.10D+01 0.00D+00 0.11D+04

3 -0.32507304D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.69D+03

4 -0.33041403D+04 0.30D-08 1 1 0.10D+01 0.00D+00 0.36D+03

5 -0.34527380D+04 0.10D-07 1 1 0.10D+01 0.00D+00 0.58D+01

6 -0.34559625D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.10D+00

7 -0.34559625D+04 0.00D+00 1 2 0.10D-04 0.00D+00 0.23D+00

8 -0.34559625D+04 0.00D+00 1 2 0.10D-04 0.00D+00 0.76D-01

9 -0.34560000D+04 0.17D-10 1 1 0.10D+01 0.00D+00 0.24D-04

10 -0.34560000D+04 0.48D-12 1 1 0.10D+01 0.00D+00 0.20D-07

26

11 -0.34560000D+04 0.11D-13 1 1 0.10D+01 0.00D+00 0.25D-11

--- Final Convergence Analysis at Last Iterate ---

Best result at iteration: ITER = 11

Objective function value: F(X) = -0.34560000D+04

Solution values: X =

0.24000000D+02 0.12000000D+02 0.12000000D+02

Distances from lower bounds: X-XL =

0.24000000D+02 0.12000000D+02 0.12000000D+02

Distances from upper bounds: XU-X =

0.18000000D+02 0.30000000D+02 0.30000000D+02

Multipliers for lower bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00

Multipliers for upper bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.72000000D+02 -0.10658141D-13

Multipliers for constraints: U =

0.00000000D+00 0.14400000D+03

Number of function calls: NFUNC = 11

Number of gradient calls: NGRAD = 11

Number of calls of QP solver: NQL = 11

*** Number of function calls: 22

In case of L = 1 and analytical derivative computations, the corresponding serial
implementation of the main program is as follows:

IMPLICIT NONE

INTEGER NMAX, MMAX, MNN2X, LWA, LKWA, LACTIV

PARAMETER (NMAX = 4,

/ MMAX = 2,

/ MNN2X = MMAX + NMAX + NMAX + 2,

/ LWA = 1.5*NMAX*NMAX + 33*NMAX + 9*MMAX + 200,

/ LKWA = NMAX + 10,

/ LACTIV = 2*MMAX + 10)

INTEGER KWA(LKWA), N, ME, M, L, MNN2, MAXIT, MAXFUN,

/ IPRINT, MAXNM, IOUT, MODE, IFAIL, I, J, NFUNC

DOUBLE PRECISION X(NMAX),F,G(MMAX),DF(NMAX), DG(MMAX,NMAX),

/ U(MNN2X), XL(NMAX), XU(NMAX), C(NMAX,NMAX),

/ D(NMAX), WA(LWA), ACC, ACCQP, STPMIN, RHO

LOGICAL ACTIVE(LACTIV), LQL

EXTERNAL QL

C

C Set some constants and initial values

C

IOUT = 6

ACC = 1.0D-10

ACCQP = 1.0D-12

STPMIN = 0.0

MAXIT = 100

MAXFUN = 10

MAXNM = 0

RHO = 0.0D0

LQL = .TRUE.

IPRINT = 2

N = 3

M = 2

ME = 0

MNN2 = M + N + N + 2

27

MODE = 0

IFAIL = 0

L = 1

NFUNC = 0

DO I=1,N

X(I) = 10.0D0

XL(I) = 0.0D0

XU(I) = 42.0D0

ENDDO

1 CONTINUE

C==

C This block computes all function values.

C

F = -X(1)*X(2)*X(3)

G(1) = X(1) + 2.0D0*X(2) + 2.0D0*X(3)

G(2) = 72.0D0 - X(1) - 2.0D0*X(2) - 2.0D0*X(3)

C

C==

NFUNC = NFUNC + 1

IF (IFAIL.EQ.-1) GOTO 4

2 CONTINUE

C==

C This block computes all derivative values.

C

DF(1) = -X(2)*X(3)

DF(2) = -X(1)*X(3)

DF(3) = -X(1)*X(2)

DG(1,1) = 1.0D0

DG(1,2) = 2.0D0

DG(1,3) = 2.0D0

DG(2,1) = -1.0D0

DG(2,2) = -2.0D0

DG(2,3) = -2.0D0

C

C==

4 CONTINUE

CALL NLPQLP (L, M, ME, MMAX, N,

/ NMAX, MNN2, X, F, G,

/ DF, DG, U, XL, XU,

/ C, D, ACC, ACCQP, STPMIN,

/ MAXFUN, MAXIT, MAXNM, RHO, IPRINT,

/ MODE, IOUT, IFAIL, WA, LWA,

/ KWA, LKWA, ACTIVE, LACTIV, LQL,

/ QL)

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

WRITE(IOUT,1000) NFUNC

1000 FORMAT(’ *** Number of function calls: ’,I3)

C

STOP

END

NLPQLP displays the following output:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

N = 3

28

M = 2

ME = 0

MODE = 0

ACC = 0.1000D-09

ACCQP = 0.1000D-11

STPMIN = 0.1000D-09

MAXFUN = 10

MAXNM = 0

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 -0.10000000D+04 0.00D+00 2 0 0.00D+00 0.00D+00 0.44D+04

2 -0.23625000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.11D+04

3 -0.32507304D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.69D+03

4 -0.33041403D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.36D+03

5 -0.34527380D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.58D+01

6 -0.34559629D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.76D-01

7 -0.34560000D+04 0.00D+00 1 1 0.10D+01 0.00D+00 0.25D-04

8 -0.34560000D+04 0.36D-14 1 1 0.10D+01 0.00D+00 0.90D-10

--- Final Convergence Analysis at Last Iterate ---

Objective function value: F(X) = -0.34560000D+04

Solution values: X =

0.24000003D+02 0.11999999D+02 0.11999999D+02

Distances from lower bounds: X-XL =

0.24000003D+02 0.11999999D+02 0.11999999D+02

Distances from upper bounds: XU-X =

0.17999997D+02 0.30000001D+02 0.30000001D+02

Multipliers for lower bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00

Multipliers for upper bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.72000000D+02 -0.35527137D-14

Multipliers for constraints: U =

0.00000000D+00 0.14400000D+03

Number of function calls: NFUNC = 8

Number of gradient calls: NGRAD = 8

Number of calls of QP solver: NQL = 8

*** Number of function calls: 8

6 Conclusions

We present a modification of an SQP algorithm designed for execution under a parallel
computing environment (SPMD) and where a non-monotone line search is applied in

29

error situations. Numerical results indicate stability and robustness for a set of 306
standard test problems. It is shown that not more than 7 parallel function evaluation
per iterations are required for performing a sufficiently accurate line search. Significant
performance improvement is achieved by the non-monotone line search especially in case
of noisy function values and numerical differentiation, and by restarts in a severe error
situation. With the new version of NLPQLP, we are able to solve about 90 % of a standard
set of 306 test examples subject to an termination accuracy 10−7 in case of extremely noisy
function values with relative accuracy of 1 % and numerical differentiation. In the worst
case, at most one digit of a partial derivative value is correct.

References

[1] Armijo L. (1966): Minimization of functions having Lipschitz continuous first par-
tial derivatives, Pacific Journal of Mathematics, Vol. 16, 1–3

[2] Barzilai J., Borwein J.M. (1988): Two-point stepsize gradient methods, IMA Journal
of Numerical Analysis, Vol. 8, 141–148

[3] Boderke P., Schittkowski K., Wolf M., Merkle H.P. (2000): Modeling of diffusion
and concurrent metabolism in cutaneous tissue, Journal on Theoretical Biology, Vol.
204, No. 3, 393-407

[4] Boggs P.T., Tolle J.W. (1995): Sequential quadratic programming, Acta Numerica,
Vol. 4, 1 - 51

[5] Bonnans J.F., Panier E., Tits A., Zhou J.L. (1992): Avoiding the Maratos effect by
means of a nonmonotone line search, II: Inequality constrained problems – feasible
iterates, SIAM Journal on Numerical Analysis, Vol. 29, 1187–1202

[6] Birk J., Liepelt M., Schittkowski K., Vogel F. (1999): Computation of optimal feed
rates and operation intervals for tubular reactors, Journal of Process Control, Vol.
9, 325-336

[7] Blatt M., Schittkowski K. (1998): Optimal Control of One-Dimensional Partial
Differential Equations Applied to Transdermal Diffusion of Substrates, in: Opti-
mization Techniques and Applications, L. Caccetta, K.L. Teo, P.F. Siew, Y.H. Le-
ung, L.S. Jennings, V. Rehbock eds., School of Mathematics and Statistics, Curtin
University of Technology, Perth, Australia, Vol. 1, 81 - 93

[8] Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and
unconstrained testing environment, Transactions on Mathematical Software, Vol.
21, No. 1, 123-160

30

[9] Bünner M.J., Schittkowski K., van de Braak G. (2004): Optimal design of electronic
components by mixed-integer nonlinear programming, Optimization and Engineer-
ing, Vol. 5, 271-294

[10] Dai Y.H., Liao L.Z. (1999): R-Linear Convergence of the Barzilai and Borwein Gra-
dient Method, Research Reoport 99-039, Institute of Computational Mathematics
and Scientific/Engineering Computing, Chinese Academy of Sciences

[11] Dai Y.H. (2000): A nonmonotone conjugate gradient algorithm for unconstrained
optimization, Research Report, Institute of Computational Mathematics and Sci-
entific/Engineering Computing, Chinese Academy of Sciences

[12] Dai Y.H. (2002): On the nonmonotone line search, Journal of Optimization Theory
and Applications, Vol. 112, No. 2, 315–330

[13] Dai Y.H., Schittkowski K. (2008): A sequential quadratic programming algorithm
with non-monotone line search, Pacific Journal of Optimization, Vol. 4, 335-351

[14] Deng N.Y., Xiao Y., Zhou F.J. (1993): Nonmonotonic trust-region algorithm, Jour-
nal of Optimization Theory and Applications, Vol. 26, 259–285

[15] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes, Mc-
Graw Hill

[16] Frias J.M., Oliveira J.C, Schittkowski K. (2001): Modelling of maltodextrin DE12
drying process in a convection oven, Applied Mathematical Modelling, Vol. 24, 449-
462

[17] Geist A., Beguelin A., Dongarra J.J., Jiang W., Manchek R., Sunderam V. (1995):
PVM 3.0. A User’s Guide and Tutorial for Networked Parallel Computing, The
MIT Press

[18] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

[19] Grippo L., Lampariello F., Lucidi S. (1986): A nonmonotone line search technique
for Newtons’s method, SIAM Journal on Numerical Analysis, Vol. 23, 707–716

[20] Grippo L., Lampariello F., Lucidi S. (1989): A truncated Newton method with
nonmonotone line search for unconstrained optimization, Journal of Optimization
Theory and Applications, Vol. 60, 401–419

[21] Grippo L., Lampariello F., Lucidi S. (1991): A class of nonmonotone stabilization
methods in unconstrained optimization, Numerische Mathematik, Vol. 59, 779–805

31

[22] Han S.-P. (1976): Superlinearly convergent variable metric algorithms for general
nonlinear programming problems Mathematical Programming, Vol. 11, 263-282

[23] Han S.-P. (1977): A globally convergent method for nonlinear programming Journal
of Optimization Theory and Applications, Vol. 22, 297–309

[24] Hartwanger C., Schittkowski K., Wolf H. (2000): Computer aided optimal design
of horn radiators for satellite communication, Engineering Optimization, Vol. 33,
221-244

[25] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

[26] Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27
nonlinear programming codes, Computing, Vol. 30, 335-358

[27] Ke X., Han J. (1995): A nonmonotone trust region algorithm for equality con-
strained optimization, Science in China, Vol. 38A, 683–695

[28] Ke X., Liu G., Xu D. (1996): A nonmonotone trust-region algorithm for uncon-
strained optimization, Chinese Science Bulletin, Vol. 41, 197–201

[29] Kneppe G., Krammer J., Winkler E. (1987): Structural optimization of large
scale problems using MBB-LAGRANGE, Report MBB-S-PUB-305, Messerschmitt-
Bölkow-Blohm, Munich

[30] Liu D.C., Nocedal J. (1989): On the limited memory BFGS method for large scale
optimization, Mathematical Programming, Vol. 45, 503–528

[31] Lucidi S., Rochetich F, Roma M. (1998): Curvilinear stabilization techniques for
truncated Newton methods in large-scale unconstrained optimization, SIAM Journal
on Optimization, Vol. 8, 916–939

[32] Maurer H., Mittelmann H.D. (2000): Optimization techniques for solving ellip-
tic control problems with control and state constraints: Part 1. Boundary control,
Computational Optimization and Applications, Vol. 16, 29–55

[33] Maurer H., Mittelmann H.D. (2001): Optimization techniques for solving elliptic
control problems with control and state constraints. Part 2: Distributed control,
Computational Optimization and Applications, Vol. 18, 141–160

[34] Ortega J.M., Rheinbold W.C. (1970): Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York-San Francisco-London

32

[35] Panier E., Tits A. (1991): Avoiding the Maratos effect by means of a nonmonotone
line search, I: General constrained problems, SIAM Journal on Numerical Analysis,
Vol. 28, 1183–1195

[36] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cambridge
University Press

[37] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization cal-
culations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics,
Vol. 630, Springer

[38] Powell M.J.D. (1978): The convergence of variable metric methods for nonlinearly
constrained optimization calculations, in: Nonlinear Programming 3, O.L. Man-
gasarian, R.R. Meyer, S.M. Robinson eds., Academic Press

[39] Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb and
Idnani. Report DAMTP 1983/Na 19, University of Cambridge, Cambridge

[40] Raydan M. (1997): The Barzilai and Borwein gradient method for the large-scale
unconstrained minimization problem, SIAM Journal on Optimization, Vol. 7, 26–33

[41] Sachsenberg, B. (2010): NLPIP: A Forrtan implementation of an SQP Interior
Point algorithm for solving large scale nonlinear optimization problems - user’s
guide, Report, Department of Computer Science, University of Bayreuth

[42] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics
and Mathematical Systems, Vol. 183 Springer

[43] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and
Powell. Part 1: Convergence analysis, Numerische Mathematik, Vol. 38, 83-114

[44] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and
Powell. Part 2: An efficient implementation with linear least squares subproblems,
Numerische Mathematik, Vol. 38, 115-127

[45] Schittkowski K. (1982): Nonlinear programming methods with linear least squares
subproblems, in: Evaluating Mathematical Programming Techniques, J.M. Mulvey
ed., Lecture Notes in Economics and Mathematical Systems, Vol. 199, Springer

[46] Schittkowski K. (1983): Theory, implementation and test of a nonlinear program-
ming algorithm, in: Optimization Methods in Structural Design, H. Eschenauer, N.
Olhoff eds., Wissenschaftsverlag

[47] Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Mathematische Operations-
forschung und Statistik, Series Optimization, Vol. 14, 197-216

33

[48] Schittkowski K. (1985): On the global convergence of nonlinear programming algo-
rithms, ASME Journal of Mechanics, Transmissions, and Automation in Design,
Vol. 107, 454-458

[49] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

[50] Schittkowski K. (1987): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

[51] Schittkowski K. (1988): Solving nonlinear least squares problems by a general pur-
pose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-
B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series of Numerical
Mathematics, Vol. 84, Birkhäuser, 295-309

[52] Schittkowski K. (1994): Parameter estimation in systems of nonlinear equations,
Numerische Mathematik, Vol. 68, 129-142

[53] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer
Academic Publishers, Dordrecht

[54] Schittkowski K. (2002): EASY-FIT: A software system for data fitting in dynamic
systems, Structural and Multidisciplinary Optimization, Vol. 23, No. 2, 153-169

[55] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming -
user’s guide, Report, Department of Mathematics, University of Bayreuth, 2003

[56] Schittkowski K. (2008): An active set strategy for solving optimization problems with
up to 200,000,000 nonlinear constraints, Applied Numerical Mathematics, Vol. 59,
2999-3007

[57] Schittkowski K. (2008): An updated set of 306 test problems for nonlinear pro-
gramming with validated optimal solutions - user’s guide, Report, Department of
Computer Science, University of Bayreuth

[58] Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of non-
linear programming algorithms for structural optimization, Structural Optimization,
Vol. 7, No. 1, 1-28

[59] Stoer J. (1985): Foundations of recursive quadratic programming methods for solv-
ing nonlinear programs, in: Computational Mathematical Programming, K. Schitt-
kowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15,
Springer

34

[60] Toint P.L. (1996): An assessment of nonmontone line search techniques for uncon-
strained optimization, SIAM Journal on Scientific Computing, Vol. 17, 725–739

[61] Toint P.L. (1997): A nonmonotone trust-region algorithm for nonlinear optimization
subject to convex constraints, Mathematical Programming, Vol. 77, 69–94

[62] Wolfe P. (1969): Convergence conditions for ascent methods, SIAM Review, Vol.
11, 226–235

[63] Zhou J.L., Tits A. (1993): Nonmonotone line search for minimax problems, Journal
of Optimization Theory and Applications, Vol. 76, 455–476

35

