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Figure 1: Wave elevation, with and without the second order contribution.

WaveKin is a program module used by the MARINTEK programs Riflex and Simo. It provides wave kin-
ematics based on the theory of 2nd order Stokes waves in finite water depth.

1 Introduc on

Input to WaveKin is the first order wave elevation, together with water depth and the depth co-ordinate at which
kinematics are to be calculated. A second order, non-linear contribution to the wave elevation is calculated and
added to the first order elevation. Fluid velocities and accelerations are calculated from the velocity potential,
up to and including second order.

An impression of the effect of including second order terms is given in Fig. 1. For moderate elevations the
second order contribution is insubstantial. For large elevations we obtain a non-linear behaviour which is seen
as a flattening of troughs and sharpening of crests 1.

Currently, second order wave kinematics are available for long-crested sea-states only.

2 Stokes theory

In this section, Stokes theory is presented. First, the governing set of differential equations are presented. Then,
it is shown how a Taylor expansion of the velocity potential around the mean surface level leads to a series
expansion in terms of wave steepness. Finally, analytical solutions of the velocity potential and wave elevation
are given up to and including second order.

1The wave shown is also discussed in Carl Trygve Stansberg etal, ”Second-Order Random Wave Kinematics and Resulting Loads on
a Bottom-Fixed Slender Monopile.” ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American
Society of Mechanical Engineers, 2013.

.
PROJECT REPORT NUMBER VERSION

1.0
4 of 9

.



2.1 The wave poten al

Stokes theory of ocean waves assumes incompressible, irrotational flow, described by a scalar velocity potential
Φ(x⃗, t) which satisfies

∇2Φ = 0, (1)

with velocities u given by spatial partial derivatives

u⃗ = ∇Φ. (2)

2.2 Boundary condi ons

Assuming an impermeable sea-floor of constant mean depth h, we have uz(z = −h) = 0, which we write in
terms of the wave potential as

∂zΦ = 0 at z = −h. (3)

The free surface of the wave is given by z = η(x, y, t). For long-crested sea states the y co-ordinate is
irrelevant, and ignored in the following.

Two boundary conditions are imposed at the wave surface. The kinematic boundary condition

∂tη + ∂xΦ∂xη + ∂yΦ∂yη − ∂zΦ = 0 at z = η, (4)

which states that a particle at the surface moves together with the surface, and the dynamic boundary condition

∂tΦ+
1

2
|u⃗|2 + gη = 0 at z = η. (5)

which follows from assuming constant pressure along the surface. Here, g is the acceleration of gravity.
Together with Eq. 1, which applies within the bulk of the ocean, Eqs. 3, 4 and 5 completely specify the set

of differential equations from which Φ is obtained.

2.3 Series expansion of the surface eleva on

In order to obtain analytic results for Φ, a perturbative approach is taken.
The velocity potential at the wave surface is extrapolated onto the mean surface level z = 0 using a Taylor

expansion, with terms of higher order in the expansion expected to contribute at higher order in the ordering
parameter ϵ.

The expansion is, to order O(ϵ2),

Φ|z>0 = Φ|z=0 + z {∂zΦ}z=0 +
1

2
z2

{
∂2zΦ

}
z=0

+ . . . . (6)

Likewise, the surface elevation is written as a series expansion,

η = η(1) + η(2) + . . . , (7)

where it is usually assumed that η(1) is a linear wave. This is a construction which allows us to study the
non-linear effects which appear at second order and beyond.

The surface elevation is a function of x and t, which in Fourier space is wavenumber k and angular frequency
ω. They are related through the dispersion relation for surface waves at finite water-depth,

ω2 = gk tanh kh, (8)

which is complete to second order. At third order, the dispersion relation includes an additional term.
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The first order contribution η(1) is provided to WaveKin by its Fourier components ai,

η(1) =

N∑
i=1

1

2
aie

iψi , (9)

where ψi = ωit − kix − εi is the phase function, with angular frequency ωi = i∆ω, wavenumber ki = k(ωi)
and phase εi. For a simulated wave from a given spectrum, the phase will typically be drawn from a uniform
probability distribution.

The sum of Eq. 9 runs over positive frequencies only. Becuase η(x, t) is real-valued, a−i = āi. Equivalent
relations exist for the time-series of velocities and accelerations; WaveKin therefore works with one-sided spectra
only. Time-series may have a non-zero mean value, therfore the one-sided spectra include the zero-frequency
components. The zero-frequency component for surface elevation a0 is also included in the one-sided spectrum,
though its value should be zero or near zero.

The expansion is in terms of an ordering parameter ϵ. It can be seen that higher orders in the expansions of
the boundary conditions at the wave surface results in terms with higher powers of spatial derivatives, surface
elevation and the velocity potential. In Fourier space, spatial derivatives result in additional factors of k, and we
have constructed the first order surface elevation to be a sum of harmonics with amplitude |a|.

The combination of factors of k and a provides a physical meaning to the ordering parameter. The wave
steepness is proportional to ak, for a harmonic wave elevation ηk = a sin kx. In order for the series expansion
to converge, the linear wave should have a spectral content which satisfies |ai|ki < ϵ for all i.

In addition to the Taylor series expansion of the wave surface boundary conditions and the expansion of η,
the velocity potential is written as a series expansion

Φ = Φ(1) +Φ(2) + . . . . (10)

A solution is obtained for each term of the expansion by ordering the terms in the wave surface boundary
conditions, setting z = η in Eq. 6. Terms at equal order in ϵ are solved for independently.

Solving for the first order velocity potential gives

Φ(1)(x, z, t) =

N∑
i=−N

1

2

igai
ωi

cosh ki(z + h)

cosh kih
eiψi . (11)

2.4 Second order solu on

Following Marthinsen and Winterstein (1992) 2, the velocity potential is given to second order by a rather
complex expression. It is analytic, and therefore supports differentiation, allowing the calculation of velocities
and accelerations.

The second order contribution to surface elevation is given by a similarly complex expression.
The solutions for both Φ(2) and η(2) depend on products of Fourier components which contribute to the

sum of the respective frequencies (wavenumbers). Because the double-sided spectrum can be expressed as a
single-sided spectrum, the second order contributions are naturally separated into sum-frequency and difference-
frequency contributions.

Because the sum- and difference-frequency components only depend on the sum and difference of frequen-
cies (wavenumbers) and the Fourier components satisfy a−i = āi, the calculations of second order contributions
to surface elevation, velocities and accelerations can be considerably simplified. The efficient calculation of
these quantities is a significant feature of WaveKin.

The difference-frequency terms give finite contributions to the zero-frequency component of the second
order elevation and velocity potential. This corresponds to finite mean-values for η and ux. This can optionally
be avoided by setting all zero-frequency components to zero.

2Tom Marthinsen and Steven R. Winterstein. ”On the skewness of random surface waves.” The Second International Offshore and
Polar Engineering Conference. International Society of Offshore and Polar Engineers, 1992.
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3 Kinema cs

Velocities and accelerations are obtained from applying partial derivatives to the wave potential. The accelera-
tion to second order is given by

a⃗(1+2) =
d
dt
(u⃗(1) + u⃗(2)) ≈ ∂

∂t
(u⃗(1) + u⃗(2)). (12)

In the above expression, convective terms are neglected. In the current implementation of WaveKin, the
inclusion of these terms is optional, with the default option being to ignore them. This reflects the general
assumption and established convention that convection terms are small and can be neglected.

Differentiation is performed in Fourier space.

3.1 Convec on terms

Convection terms can optionally be included in the accelerations returned by WaveKin. These are calculated by
taking spatial derivatives of the velocity field (in the frequency domain) and multiplying with the velocity field
(in the time domain).

3.2 Kinema cs above the mean surface level

The velocity potential Φ(x, z, t) is extrapolated above z = 0 according to the Taylor expansion of Eq. 6. Kin-
ematics are obtained from the extrapolated potential by spatial and temporal differentiation in the same manner
as for the velocity potential at and below z = 0. However, it should be noted that the second order contribution
at z > 0 involves the first order velocity potential Φ(1). There are no quadratic transfer functions involved above
mean surface level until third order contributions.

4 Valida on

The calculation of elevation and kinematics is compared with previous calculations, using the 4hr wave elevation
record of Stansberg etal (2013).

Figs. 2, 3 and 4 show time series of surface elevation, horizontal and vertical velocities, horizontal and
vertical accelerations and power spectra for the wave studied in Stansberg etal (2013). Kinematics are calculated
at z = −2m. When the surface elevation drops beneath this depth the node is considered to be ”dry” and no
results are plotted.

The power spectra (shown with no filtering or smoothing) are the total spectrum and that of the second
order contribution only, showing that the second order contribution separates into low-frequency (difference-
frequency) and high-frequency (sum-frequency) contributions.

The WaveKin implementation has been compared with the implementation used by Stansberg etal (2013).
Results are found to be in agreement.

4.1 Depth profile

Fig. 5 shows velocities and accelerations obtained from an irregular wave generated from a JONSWAP spectrum
withHs = 7.15m, Tp = 12.4s and γ = 1.52. The velocities and accelerations are plotted on the horizontal axis
with the depth co-ordinate on the vertical axis.

When the depth profile is animated, a swaying motion is observed. Amplitudes are largest near the surface,
as expected. Above the surface there are no kinematics. For the purpose of extrapolation between a ”wet” and
a ”dry” node on a partially submerged structure, a useful convention is to keep a constant value for kinematics
at z > η which is equal to the values at z = η.
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Figure 2: Time series of surface elevation, horizontal and vertical velocities. The surface elevation shows both
the linear (1st order) and non-linear (1st and 2nd order) wave. The velocities are given at z = −2m. No results
are plotted when the surface is below the chosen value of z.

Figure 3: Time series of horizontal and vertical accelerations. Otherwise identical with Fig. 2. Includes con-
vection terms.
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Figure 4: Power spectra of surface elevation, total (top) and second order contributions (bottom). Both spectra
are for the surface elevation shown in Fig. 2.

Figure 5: Depth profile of wave kinematics: horizontal and vertical velocities and horizontal and vertical accel-
erations, respectively. The green horizontal line marks the surface elevation.
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