Bibliography More information of various applications and benchmarking of the developed software tools can be found in the publications listed below. Reference Keywords N. Luxcey, H. Ormberg, E. Passano (2011): Global Analysis of a Floating Wind Turbine Using an Aero-Hydro-Elastic Numerical Model. Part II: Benchmark Study, OMAE2011-50088 wind, FWT, H. Ormberg, E. Passano, N. Luxcey (2011): Global Analysis of a Floating Wind Turbine Using an Aero-Hydro-Elastic Model. Part I: Code Development and Case study, OMAE2011-50114 wind, FWT, T. Sauder, V. Chabaud, M. Thys, E. Bachynski, L. O. Sæter (2016): Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine. Part I: The Hybrid Approach, OMAE2016-54435 wind, FWT, Erin E. Bachynski (2014): Design and Dynamic Analysis of Tension Leg Platform Wind Turbines, PhD thesis, NTNU, Trondheim, Norway wind, FWT, TLP Harald Ormberg and Erin E. Bachynski (2012): Global analysis of floating wind turbines: Code development, model sensitivity and benchmark study, ISOPE wind, FWT, H. Ormberg and Erin E. Bachynski (2015) : Sensitivity of Estimated Tower Fatigue to Wind Modeling for a Spar Floating Wind Turbine , ISOPE wind, FWT, spar Madjid Karimirad, Constantine Michailides (2016): V-shaped semisubmersible offshore wind turbine subjected to misaligned wave and wind, Journal of renewable and sustainable energy wind, FWT Petter Andreas Berthelsen, Erin E. Bachynski, Madjid Karimirad, Maxime Thys (2016): Real-Time Hybrid Model Tests of a Braceless Semi-Submersible Wind Turbine: Part III — Calibration of a Numerical Model, OMAE2016-54640 wind, FWT, semi Marit I. Kvittem, Petter Andreas Berthelsen, Lene Eliassen, Maxime Thys (2018): Calibration of Hydrodynamic Coefficients for a Semi-Submersible 10 MW Wind Turbine, OMAE2018-77826 wind, FWT, semi E. Bachynski,M. Thys, T. Sauder, ,V. Chabaud, L. O. Sæter (2016): Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine. Part II: Experimental results, https://doi.org/10.1115/OMAE2016-54437[OMAE2016-54437 wind, FWT, semi P. A. Bertelsen, E. Bachynski,M. Karimirad,M. Thys, (2016): Real-time Hybrid Model Tests of a Braceless Semi-Submersible Wind Turbine. Part III: Calibration Of a Numerical Model, OMAE2016-54640 wind, FWT, semi Carlos Eduardo Silva de Souza,Nuno Fonseca,Petter Andreas Bertelse, Maxima Thyus (2021): Calibration of a Time-Domain Hydrodynamic Model for A 12 MW Semi-Submersible Floating Wind Turbine, OMAE2021-62857 wind, FWT, semi, 12MW Petter Andreas Berthelsen, Erin E. Bachynski, Madjid Karimirad, Maxime Thys(2016): Real-Time Hybrid Model Tests of a Braceless Semi-Submersible Wind Turbine: Part III — Calibration of a Numerical Model, OMAE2016-54640 wind, FWT, semi Marit I. Kvittem, Petter Andreas Berthelsen, Lene Eliassen, Maxime Thys (2018): Calibration of Hydrodynamic Coefficients for a Semi-Submersible 10 MW Wind Turbine, OMAE2018-77826 wind, FWT, 10MW , semi Silva de Souza, Carlos Eduardo; Berthelsen, Petter Andreas; Eliassen, Lene; Bachynski, Erin Elizabeth; Engebretsen, Espen; Haslum, Herbjørn (2020) Definition of the INO WINDMOOR 12 MW base case floating wind turbine, SINTEF Ocean report no. OC2020 A-044 wind, FWT, 12MW Carlos Eduardo Silva de Souza, Nuno Fonseca, Petter Andreas Berthelsen, Maxime Thys (2021): Calibration of a Time-Domain Hydrodynamic Model for A 12 MW Semi-Submersible Floating Wind Turbine, OMAE2021-62857 wind, FWT, 12MW, semi Yin, D., Lie, H., Wu, J., (2019): Structural and Hydrodynamic Aspects of Steel Lazy Wave Riser in Deepwater. J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4045333 Time domain VIV Thorsen, M.J. (2016): Time Domain Analysis of Vortex-Induced Vibrations. PhD thesis, NTNU, Trondheim, Norway. Time domain VIV Ulveseter, J.V. (2018): Advances in semi-empirical time domain modelling of vortex-induced vibrations. PhD thesis, NTNU, Trondheim, Norway. Time domain VIV Wu J., Jin Z.J., Yin D.C., Passano E., Lie H., Sævik S., Tognarelli M., Grytøyr G., Andersen T., Karunakaran D., Igland R.(2020): Time domain VIV analysis tool VIVANA-TD: validations and improvements. Florida, USA: 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2020-18795 Time domain VIV Jie Wu, Decao Yin, Jingzhe Jin, Halvor Lie, Elizabeth Passano, Svein Sævik, Guttorm Grytøyr, Michael A. Tognarelli, Daniel Karunakaran, Torgrim Andersen, Ragnar Igland (2022): Time Domain Prediction of VIV Responses in Oscillatory Flow Conditions OMAE2022-79191 Time domain VIV, Steel Lazy Wave Riser Passano, E., Grytøyr, G., Haslum, H. , Lie, H., Yin, D. (2022): Simulation of VIM of an Offshore Floating Wind Turbine. OMAE2022-79006 Vortex Induced Motions (VIM), FWT Yin, D., Lie, H., Passano, E., Sævik, S.,Grytøyr, G., Tognarelli, M., Andersen, T., Igland, R., Karunakaran, D., Gaskill, C. (2022): Vortex-Induced Vibrations of a Top-Tensioned Riser in Combined Currents and Waves. OMAE-79033 Time domain VIV, TTR Yin, D., Lie, H., Passano, E., Sævik, S.,Grytøyr, G., Tognarelli, M., Andersen, T., Igland, R., Karunakaran, D., Gaskill, C. (2022): VIV Responses of a Drilling Riser Subjected to Current and Top Motions. OMAE-79180 Time domain VIV, TTR Jie Wu, Fengjian Jiang, Halvor Lie, Elizabeth Passano, Decao Yin, Svein Sævik, Guttorm Grytøyr, Brendan Francis Hogg, Themistocles Resvanis, Kim Vandiver (2023): Evaluation of VIV Prediction Practice of Deep-Water Steel Lazy Wave Risers (SLWRS), OMAE2023-105583 Time domain VIV, frequency domain, Shear7 Wojciech Popko, Matthias L. Huhn, Amy N. Robertson, Jason M. Jonkman, Fabian Wendt, Kolja Mülle et. al (2018): Verification of Numerical Offshore Wind Turbine Models Based on Full Scale Alpha Ventus Data within OC5 Phase III, OMAE2018-77589 wind, jacket, software verification Wojciech Popko, Amy Robertson, Jason Jonkman, Fabian Wendt, Philipp Thomas, Kolja Müller et. al (2021): Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III, J. Offshore Mech. Arct. Eng. Vol. 143(1) wind, jacket, software validation Stian H. Sørum, Nuno Fonseca, Micheal Kent, Rui Pedro Faria (2023) : Modelling of Synthetic Fibre Rope Mooring for Floating Offshore Wind Turbines Journal of Marine Science and Engineering 2023 11(1) 193 wind, FWT, fibre rope, SYROPE, mooring Stian H. Sørum Jan-Tore H. Horn og Jørgen Amdahl (2017): Comparison of numerical response predictions for a bottom-fixed offshore wind turbine Energy Procedia Volume 137, October 2017, Pages 89-99 wind, bottom fixed Stian H. Sørum, Georgios Katsikogiannis, Erin E. Bachynski-Polic, Jørgen Amdahl, Ana M. Page, Rasmus T. Klinkvor (2022): Fatigue design sensitivities of large monopile offshore wind turbines, Wind Energy Volume25, Issue10 pp. 1684-1709 wind, wind field, monopile, wave spectrum, soil model, fatigue, Stian H. Sørum, Erin E. Bachynski-Polic, Jørgen Amdahl (2022): Wind and soil model influences on the uncertainty in fatigue of monopile supported wind turbines, J. Phys.: Conf. Ser. 2362 012038 wind, wind, field, monopile, soil model, fatigue Thomas H. Viuff, Stian H. Sørum, Marit Irene Kvittem (2022): Modelling of Fibre Rope Mooring for a Floating Offshore Wind Turbine, OMAE2023-102645 wind, FWT, fibre rope, SYROPE, mooring Jie Wu, Decao Yin, Halvor Lie, Elizabeth Passano, Gro Sagli Baarholm, Svein Sævik (2024): Time Domain Prediction of Combined CF and IL VIV Responses under Constant Currents, OMAE2024-125654 (DRAFT) Time domain VIV, model test comparison Dadmarzi, F.H., Fonseca, N., Berthelsen, P.A., (2024): Contribution of Waves to Horizontal Low Frequency Motions of Floating Offshore Wind Turbines., OMAE2024-136471 (DRAFT) wind, FWT, 12MW Decao Yin, Elizabeth Passano, Petter A. Berthelsen (2024): Numerical Investigation of Vortex-Induced Motions (Vim) on A Semi-Submersible Floating Offshore Wind Turbine, OMAE2024-127767 (DRAFT) Time domain VIV, VIM, FOWT, 12MW