Appendix B: Numerical Values for Excitation Coefficients Default lift coefficients Pure cross-flow loading (IRSTYP = 1): The default curves cover the \(\mathrm {\hat{f}}\) range of \(\mathrm {0.120-0.310}\). (Internal VIVANA data FHLC_DEF, AD0_DEF, ADMAX_DEF, CLM_DEF, CL0_DEF) Table 1. Coefficients \(\mathrm {\hat{f}_{CF}}\) \(\begin{array}{l}(\frac{A}{D})_{CF}\quad \mathrm {for}\\C_{e,CF}=0\end{array}\) \(\begin{array}{l}(\frac{A}{D})_{CF}\quad \mathrm {for}\\C_{e,CF}=\mathrm {max}\end{array}\) \(C_{e,CF,\mathrm {max}}\) \(\begin{array}{l}C_{e,CF}\quad \mathrm {for}\\\frac{A}{D}=0\end{array}\) .120 .200 .100 .100 .050 .125 .400 .200 .100 .060 .135 .500 .270 .100 .080 .140 .550 .350 .140 .110 .150 .600 .450 .200 .180 .160 .700 .500 .350 .240 .165 .800 .500 .500 .300 .170 .900 .430 .800 .400 .175 .820 .400 .700 .200 .180 .780 .400 .500 .150 .185 .750 .400 .550 .160 .190 .650 .400 .600 .170 .200 .580 .380 .650 .200 .210 .550 .350 .600 .250 .250 .400 .200 .350 .200 .300 .200 .100 .200 .150 .310 .180 .090 .100 .150 The default pure cross-flow loading curves used before VIVANA 4.0 were slightly different: Table 2. Coefficients \(\mathrm {\hat{f}_{CF}}\) \(\begin{array}{l}(\frac{A}{D})_{CF}\quad \mathrm {for}\\C_{e,CF}=0\end{array}\) \(\begin{array}{l}(\frac{A}{D})_{CF}\quad \mathrm {for}\\C_{e,CF}=\mathrm {max}\end{array}\) \(C_{e,CF,\mathrm {max}}\) \(\begin{array}{l}C_{e,CF}\quad \mathrm {for}\\\frac{A}{D}=0\end{array}\) .120 .149 .100 .100 .000 .125 .266 .200 .100 .000 .127 .400 .214 .100 .016 .130 .451 .235 .100 .040 .135 .505 .270 .100 .080 .140 .530 .350 .140 .110 .150 .588 .450 .200 .180 .160 .658 .500 .350 .240 .165 .746 .500 .500 .300 .168 .890 .460 .780 .350 .172 .900 .430 .800 .400 .175 .837 .400 .700 .200 .180 .761 .400 .400 .100 .185 .706 .400 .300 .000 .190 .666 .400 .200 .000 .200 .615 .380 .100 .000 .210 .592 .350 .100 .000 .220 .575 .313 .100 .000 .230 .539 .275 .100 .000 .240 .504 .238 .100 .000 .250 .420 .200 .100 .000 .270 .312 .160 .100 .000 .280 .247 .140 .100 .000 .290 .186 .120 .100 .000 .300 .160 .100 .100 .000 .310 .136 .090 .100 .000 Pure in-line loading (IRSTYP = 2): The default curves cover the \(\mathrm {\hat{f}}\) range of \(\mathrm {0.200-0.900}\). (Internal VIVANA data FHLC_IL_DEF, AD0_IL_DEF, ADMAX_IL_DEF, CLM_IL_DEF, CL0_IL_DEF) Table 3. Coefficients \(\mathrm {\hat{f}_{CF}}\) \(\begin{array}{l}(\frac{A}{D})_{IL}\quad \mathrm {for}\\C_{e,IL}=0\end{array}\) \(\begin{array}{l}(\frac{A}{D})_{IL}\quad \mathrm {for}\\C_{e,IL}=\mathrm {max}\end{array}\) \(C_{e,IL,\mathrm {max}}\) \(\begin{array}{l}C_{e,IL}\quad \mathrm {for}\\\frac{A}{D}=0\end{array}\) .200 .000 .000 .000 .000 .250 .000 .000 .000 .000 .275 .070 .050 .010 .000 .300 .110 .070 .070 .000 .325 .100 .060 .100 .000 .350 .070 .045 .050 .000 .375 .130 .050 .100 .000 .400 .115 .080 .070 .000 .425 .120 .070 .140 .000 .450 .110 .060 .130 .000 .500 .080 .050 .130 .000 .550 .075 .045 .130 .000 .600 .068 .035 .110 .000 .650 .050 .030 .060 .000 .700 .035 .020 .040 .000 .750 .028 .010 .020 .000 .800 .000 .000 .000 .000 .850 .000 .000 .000 .000 .900 .000 .000 .000 .000 Cross-flow and in-line loading (IRSTYP = 3). CF: As for IRSTYP = 1. The default curves cover the \(\mathrm {\hat{f}}\) range of \(\mathrm {0.12-0.310}\). IL: Default curve cover the \(\mathrm {\hat{f}}\) range from \(\mathrm {0.250-0.400}\). (Internal VIVANA data FHLC_IL2_DEF, AD0_IL2_DEF, ADMAX_IL2_DEF, CLM_IL2_DEF, CL0_IL2_DEF) Table 4 gives the parameters on the VIVANA CF format as function of the CF non-dimensional frequency. The IL non-dimensional frequency is 2 times this value. Passano et al. (2012) Table 4. Coefficients \(\mathrm {\hat{f}_{CF}}\) \(\mathrm {\hat{f}_{IL}}\) \(\begin{array}{l}(\frac{A}{D})_{IL}\quad \mathrm {for}\\C_{e,IL}=0\end{array}\) \((\frac{A}{D})_{IL,\mathrm {max}}\) \(C_{e,IL,\mathrm {max}}\) \(\begin{array}{l}C_{e,IL}\quad \mathrm {for}\\\frac{A}{D}=0\end{array}\) 0.1 0.200 0.210 0.080 0.250 0.010 0.125 0.250 0.230 0.110 0.300 0.020 0.15 0.300 0.260 0.110 0.400 0.020 0.156 0.312 0.260 0.110 0.470 0.020 0.167 0.334 0.260 0.100 0.470 0.020 0.173 0.346 0.240 0.070 0.450 0.010 0.183 0.366 0.120 0.050 0.400 0.010 0.2 0.400 0.100 0.040 0.350 0.010 0.25 0.500 0.070 0.040 0.250 0.010 0.3 0.600 0.070 0.040 0.200 0.010 these curves must be regarded as preliminary and subjected to revision as soon as we have better results from our experiments. Appendix A: Correction of Non-Dimensional Frequency for Actual Strouhal Number