1. CRS0 - Thin-walled pipe cross section This cross-section allows for simplified input of circular, homogenous cross-sections. The input format is convenient for metallic pipe cross sections. A thin-walled pipe cross section example is shown below. Subsequent sections give details and further options. '********************************************************************** NEW COMPONENT CRS0 '********************************************************************** ' units: Mg kN m C ' icmpty temp pipe500 20. ' ' diast thst densst thex densex 0.5 0.015 7.85 0.15 0.4 ' metkind emod gmod 1 206000E3 79000E3 ' ' dh is the hydrodynamic diameter ' icode=2 => dimensionless hydrodynamic force coefficients ' cqx cqy cax cay clx cly icode dh 0.0 0.8 0. 0.60 0. 0. 2 0.9 ' ' tb ycurmx 1. 0.4329 1.1. Data group identifier NEW COMPonent CRS0 1.2. Component type identifier CMPTYP-ID TEMP ALPHA BETA CMPTYP-ID: character(8): Component type identifier TEMP: real, default: 0: Temperature at which the specification applies \(\mathrm {[Temp]}\) ALPHA: character/real, default: 0: Thermal expansion coefficient \(\mathrm {[Temp^{-1}]}\) = STEE: The value \(\mathrm {1.2\times 10^{-5}}\) is used = TI23: The value \(\mathrm {9.0\times 10^{-6}}\) is used These values are applicable for temperatures in Celcius or Kelvin BETA: character/real, default: 0: Pressure expansion coefficient \(\mathrm {[1/(F/L^2)]}\) BETA gives the expansion of an element with zero effective tension from the difference between the internal and the external pressure. = PIPE: thin walled pipe assumption. BETA is calculated from the parameters given in Thin-walled pipe cross section_cross (below) as: \(\mathrm {\frac{DIAST(1-2\nu)}{4THST\times EMOD}}\) where \(\mathrm {\nu=\frac{EMOD}{2GMOD}}-1\) Axis symmetric pipe cross section image::um_ii_fig56.svg [title="Axis symmetric pipe cross section",width=456] 1.3. Cross-section parameters DIAST THST DENSST THEX DENSEX R_EXTCNT R_INTCNT DIAST: real: Diameter of pipe \(\mathrm {[L]}\) DIAST > 0: Outer diameter of pipe DIAST < 0: Inner diameter of pipe THST: real: Thickness of pipe \(\mathrm {[L]}\) DENSST: real: Density of pipe material \(\mathrm {[M/L^3]}\) THEX: real, default: 0: Thickness of external coating \(\mathrm {[L]}\) DENSEX: real, default: 0: Density of external coating \(\mathrm {[M/L^3]}\) R_EXTCNT: real, default: 0: Outer contact radius \(\mathrm {[L]}\) R_INTCNT: real, default: 0: Inner contact radius \(\mathrm {[L]}\) Buoyancy is calculated from the total external diameter \(\mathrm {DIAST+2\times THEX}\) (For DIAST > 0) or \(\mathrm {|DIAST|+2\times THST+2\times THEX}\) (For DIAST < 0). The outer and inner contact radii of the cross section, R_EXTCNT and R_INTCNT, are used for * seafloor contact * pipe-in-pipe contact * Tubular contact point specification The default values of R_EXTCNT and R_INTCNT are zero in the present version. 1.4. Material properties Material constants MATKIND EMOD GMOD SIGY EMODY/NPAIR HARPAR NCIRC MATKIND: integer: Type of material model MATKIND = 1: linear material MATKIND = 2: elastic-plastic MATKIND = 3: strain-stress curve MATKIND = 4: linear material including shear deformation EMOD: real > 0: Modulus of elasticity \(\mathrm {[F/L^2]}\) GMOD: real > 0: Shear modulus \(\mathrm {[F/L^2]}\) SIGY: real: Yield stress \(\mathrm {[F/L^2]}\) EMODY/NPAIR: real/integer: MATKIND = 2: Slope of strain-stress curve for plastic region \(\mathrm {[F/L^2]}\). EMODY < EMOD MATKIND = 3: Number of user specified strain-stress relations 2 ⇐ NPAIR ⇐ 99 HARPAR: real, default: 1: Hardening parameter for material 0 ⇐ HARPAR ⇐ 1 HARPAR = 1: Kinematic hardening HARPAR = 0: Isotropic hardening NCIRC: integer >= 8, default: 16: Number of integration points along circumference For MATKIND = 1 or 4: Only EMOD and GMOD are used For MATKIND = 4: The shear stiffness is calculated as: \(\mathrm {GMOD\frac{\pi (D_e^2-D_i^2)}{4}0.5}\) For MATKIND = 3: NPAIR input lines of the strain-stress curve must be given Section 1_strain. Strain-stress curve (NPAIR input lines to be specified for MATKIND=3) EPS(I) SIG(I) EPS(i): real: Strain for point i on strain-stress curve \(\mathrm {[1]}\) SIG(i): real: Stress for point i on strain-stress curve \(\mathrm {[F/L^2]}\) The first point in the stress-strain curve is automatically deduced: EPS(0) = SIGY/EMOD, SIG(0) = SIGY. This point is taken as the proportionality limit of the material, at which the yield/hardening process starts. EPS(i) and SIG(i) are to be given in increasing order. The gradient of the curve must decrease with increasing strain. 1.5. Bending-torsion geometric coupling specification for MATKIND = 1 or 4 This data group is optional, and can only be applied for MATKIND = 1 or 4. BTGC BTGC: character(4): bending-torsion coupling identifier. If the BTGC identifier is present, geometric coupling between torsion and bending is accounted for. 1.6. Damping specification Identical to input for cross-section type CRS1 except that the local axial friction model, AXFRC, is illegal for CRS0, see Damping specification. 1.7. Hydrodynamic load types Identical to input for cross-section type CRS1 except that the load type HNET is not available, see Hydrodynamic load type. 1.8. Aerodynamic force coefficients Identical to input for cross-section type CRS1, see Aerodynamic load type identification. 1.9. Capacity parameter Identical to input for cross-section type CRS1, see Capacity parameter.