How to model a regular wave using irregular wave input 1. Input Time series generation parameters Simulation length, Tdur[s] Time step, dt [s] Numerical wave spectrum Wave height, H [m] Wave period, T[s] 2. Time series generation parameters The number of time step must be 2^n To estimate the actual Tdur that will be used in the time series generation Number of time steps in FFT: \(\ln{\frac{T_{dur}}{dt}}=\ln{2^n}= n \ln{2} \Rightarrow n_{actual} = \lceil{{\frac{\ln{\frac{T_{dur}}{dt}}}{\ln{2}}}}\rceil\) Actual simulation length: \(T_{dur,actual} = n_{actual} \cdot dt\) Wave frequency in FFT: \(\Delta f = \frac{1}{T_{dur,actual}}, \Delta\omega = 2\pi\cdot df\) 3. Numerical wave spectrum Regular wave frequency \(\omega_{reg} = \frac{2\pi}{T}\) Wave energy \(\frac{1}{2} (\frac{H}{2})^2 = S(\omega) \Delta\omega \rightarrow S(\omega) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\) 4. Make input Input frequencies \(\omega_1 = (\omega_{reg}- \Delta\omega/2)(1-fac)\) \(\omega_2 = \omega_{reg} - \Delta\omega/2\) \(\omega_3 = \omega_{reg}+ \Delta\omega/2\) \(\omega_4 = \omega_{reg}+ \Delta\omega/2(1+fac)\) Input wave energy \(S(\omega_1) = 0.0\) \(S(\omega_2) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\) \(S(\omega_3) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\) \(S(\omega_4) = 0.0\) Fac is a small value ensuring that the wave frequencies are increasing in value, example: fac=0.00005 5. Example H=10m, T=12.012s Tdur=4000s ⇒ Tdur,actual=4096s Dt=1s