How to model a regular wave using irregular wave input

1. Input

  • Time series generation parameters

    • Simulation length, Tdur[s]

    • Time step, dt [s]

  • Numerical wave spectrum

    • Wave height, H [m]

    • Wave period, T[s]

2. Time series generation parameters

  • The number of time step must be 2^n

  • To estimate the actual Tdur that will be used in the time series generation

  • Number of time steps in FFT:

    • \(\ln{\frac{T_{dur}}{dt}}=\ln{2^n}= n \ln{2} \Rightarrow n_{actual} = \lceil{{\frac{\ln{\frac{T_{dur}}{dt}}}{\ln{2}}}}\rceil\)

  • Actual simulation length:

    • \(T_{dur,actual} = n_{actual} \cdot dt\)

  • Wave frequency in FFT:

    • \(\Delta f = \frac{1}{T_{dur,actual}}, \Delta\omega = 2\pi\cdot df\)

3. Numerical wave spectrum

  • Regular wave frequency

    • \(\omega_{reg} = \frac{2\pi}{T}\)

  • Wave energy

    • \(\frac{1}{2} (\frac{H}{2})^2 = S(\omega) \Delta\omega \rightarrow S(\omega) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\)

4. Make input

  • Input frequencies

    • \(\omega_1 = (\omega_{reg}- \Delta\omega/2)(1-fac)\)

    • \(\omega_2 = \omega_{reg} - \Delta\omega/2\)

    • \(\omega_3 = \omega_{reg}+ \Delta\omega/2\)

    • \(\omega_4 = \omega_{reg}+ \Delta\omega/2(1+fac)\)

  • Input wave energy

    • \(S(\omega_1) = 0.0\)

    • \(S(\omega_2) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\)

    • \(S(\omega_3) = \frac{1}{2} (\frac{H}{2})^2 \frac{1}{\Delta \omega}\)

    • \(S(\omega_4) = 0.0\)

  • Fac is a small value ensuring that the wave frequencies are increasing in value, example: fac=0.00005

5. Example

  • H=10m, T=12.012s

  • Tdur=4000s ⇒ Tdur,actual=4096s

  • Dt=1s

ex1
ex2
523569387 image24